10.4. რომელი ფუნქციები გამოიყენება ნორმალური განაწილებისთვის Google Sheets-ში?

Google Sheets გთავაზობს რამდენიმე მოსახერხებელ ფუნქციას იმ ამოცანების ამოსახსნელად, სადაც ნორმალური განაწილების მქონე შემთხვევითი ცვლადი მონაწილეობს. პირველ რიგში, იმ ალბათობის დასათვლელად, რომ ნორმალურად განაწილებული ცვლადი ნაკლებია რაიმე რიცხვზე, გამოიყენება NORM.DIST (ან NORMDIST) ფუნქცია: სადაც x რაიმე რიცხვითი მნიშვნელობაა, mean – მოცემული ცვლადის საშუალო, standard_deviation – ცვლადის სტანდარტული გადახრა, ხოლო cumulative კი მიუთითებს კუმულატიური ალბათობა გვაინტერესებს […]

10.3. როგორ გამოვიყენოთ Z-ცხრილი?

Z-ცხრილი შედგება პირველ სტრიქონსა და სვეტში მოთავსებული \( Z \) სტანდარტული ნორმალური ცვლადის მდგენელი მნიშვნელობებისა და დანარჩენ უჯრებში მოთავსებული შესაბამისი კუმულატიური ალბათობის მნიშვნელობებისგან. Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 […]

10.2. ნორმალური ცვლადისთვის ალბათობების გამოთვლა. მოცემული ალბათობით უცნობი სიდიდეების ძიება

ალბათ გახსოვთ, რომ ნებისმიერი უწყვეტი განაწილებისთვის ადგილი აქვს ტოლობას: $$ P(a < X < b) = F(b) – F(a) $$ ეს ტოლობა მიანიშნებს იმ ფაქტზე, რომ თუკი გვაინტერესებს ის, თუ რა ალბათობით ჩავარდება $ X $ ცვლადი რაიმე $ a $ და $ b $ რიცხვებს შორის, საჭიროა დათვლილ იქნას კუმულატიური ალბათობები, ანუ ალბათობები იმისა, […]

10.1. ნორმალური განაწილების ალბათური სიმკვრივე

როგორც უკვე აღვნიშნეთ, ნორმალური განაწილება მრავალი შემთხვევითი პროცესის ალბათური განაწილების კარგ მიახლოებას წარმოადგენს. კერძოდ, ცნობილია, რომ ხშირად სათადარიგო ნაწილების ზომები ან სურსათის შეფუთვის წონები ნორმალურად არის განაწილებული, რაც ხარისხის კონტროლის ამოცანებს გვიადვილებს. აგრეთვე, მთლიანი გაყიდვები და აქციათა ფასების ზოგიერთი მახასიათებელი ხშირად ნორმალურ განაწილებას ექვემდებარება და პროგნოზირების მოდელები სწორედ ამ ტიპის განაწილებაზეა დაფუძნებული. გარდა ზემოხსენებულისა, ნორმალურ […]

10. ნორმალური განაწილება

შესავალი წინა თავი მიეძღვნა უწყვეტი ალბათური განაწილებების ზოგად დახასიათებას და ასევე განხილულ იყო ერთ-ერთი კონკრეტული მათგანი: თანაბარი განაწილება. ალბათ გახსოვთ, რომ თანაბარი განაწილების უმთავრესი დამახასიათებელი ნიშანი არის შემდეგი: რაიმე ინტერვალის ნებისმიერი წერტილის მიდამოში ხდომილების მოხდენის შესაძლებლობა თანაბარია. მაგალითად, ინჟინერიაში თანაბარი განაწილება შესაძლოა ახასიათებდეს მილსადენზე ავარიის მოხდენის ხდომილებას მთელ სიგრძეზე, როცა ინჟინერს მიაჩნია, რომ მილსადენის ნებისმიერი […]

9.3. თანაბარი განაწილება

უწყვეტი შემთხვევითი ცვლადის ერთ-ერთ ყველაზე მარტივ შემთხვევას წარმოადგენს თანაბარი განაწილების მქონე შემთხვევითი ცვლადი. ის გამოიყენება ისეთი სიტუაციების მოდელირებისას, როცა დროის, მანძილის ან სხვა სიდიდის გარკვეულ ინტერვალში რაიმე მოვლენის მოხდენის შესაძლებლობა თანაბარია ინტერვალის ყველა წერტილში. ანუ ფაქტიურად, ეს ნიშნავს, რომ ცვლადის ალბათობის სიმკვრივე თანაბარია ყველა წერტილში. ამასთან, აღნიშნული განაწილების დროს სიმკვრივე დამოკიდებულია მხოლოდ ინტერვალის სიგრძეზე. მაგალითად, […]

9.2. ალბათობის სიმკვრივის ფუნქცია

მიუხედავად იმისა, რომ კუმულატიური ალბათობის ფუნქციის მეშვეობით ჩვენ შეგვიძლია უწყვეტი ცვლადის ალბათობების დათვლა, ხშირად უფრო სასარგებლოა ალბათობის ამსახველი სხვა ტიპის ფუნქცია, რომელსაც ეწოდება ალბათობის სიმკვრივის ფუნქცია (ასფ, ალბათობის სიმკვრივე). ის, როგორც წესი, აღინიშნება \( f(x) \)-ით, ანუ იგივენაირად, როგორც დისკრეტული ცვლადის ალბათობის ფუნქცია. მაგრამ ეს უკანასკნელი პირდაპირ იძლეოდა ალბათობას იმისა, რომ დისკრეტული ცვლადის მნიშვნელობა გახდებოდა […]

9.1. უწყვეტი შემთხვევითი ცვლადის კუმულატიური ალბათობის ფუნქცია

განსაზღვრება 9.1.1. უწყვეტი შემთხვევითი ცვლადის კუმულატიური ალბათობის ფუნქცია, \( F(x) \), გამოსახავს ალბათობას იმისა, რომ \( X \) ცვლადი არ აღემატება \( x \) სიდიდეს: $$ F(x)=P(X≤x)=P(X<x) $$ შევნიშნოთ, რომ \( P(X≤x) \) და \( P(X<x) \) მართლაც ერთსა და იმავე ალბათობაზე მიუთითებს, რადგან, როგორც შესავალში მივუთითეთ, წერტილში მნიშვნელობის მიღების ალბათობა ნულის ტოლია: \( P(X=x)=0 […]

9. უწყვეტი ალბათური განაწილებები. თანაბარი განაწილება

შესავალი წინა თავებში ბევრი ვისაუბრეთ დისკრეტულ შემთხვევით ცვლადებზე. კიდევ ერთხელ ხაზი გავუსვათ, რომ შემთხვევითი ცვლადი დისკრეტული ტიპისაა, თუკი ის მნიშვნელობებს იღებს თვლადი სიმრავლიდან. სტუდენტთა რაოდენობა ლექციაზე, ავტომობილების რაოდენობა პარკინგზე, ამოსული საფასურების რაოდენობა მონეტის 5-ჯერ აგდებისას წარმოადგენს დისკრეტული ცვლადის კარგ მაგალითებს, რადგან ეს სიდიდეები დათვლადია (0, 1, 2,…). თუმცა ისევე, როგორც რაოდენობრივ მონაცემთა ტიპების განხილვისას, შემთხვევითი […]

8.5. რომელი ფუნქციები გამოიყენება Google Sheets-ში დისკრეტული ცვლადისთვის ალბათობის დასათვლელად?

Google Sheets აღჭურვილია სპეციალური ფუნქციებით ბინომიალური, ჰიპერგეომეტრიული და პუასონის შემთხვევითი ცვლადებისთვის ალბათობების დასათვლელად. ბინომიალური ცვლადისთვის ფუნქციას აქვს შემდეგი სახე: სადაც num_successes წარმოადგენს წარმატებათა იმ რაოდენობას, რომლის მიღწევის ალბათობაც გვაინტერსებს, num_trials ცდათა რაოდენობაა, prob_success – წარმატების ალბათობა ცდაში, ხოლო cumulative კი განსაზღვრავს კუმულატიური ალბათობა გვსურს თუ წერტილოვანი. მაგალითად, თუკი გვაინტერესებს რა არის ალბათობა იმისა, რომ $ […]